Smart Sea Level Sensors for Coastal Resilience

savannahga.gov

SAVANNAI

Kim M. Cobb

Georgia Power Chair, Professor Earth & Atmospheric Sciences Director, Global Change Program

Dr. Russell Clark Senior Research Scientist, Computer Science

Nick Deffley Director, Office of Sustainability, City of Savannah

Randall Mathews

Assistant Director, Chatham County Emergency Management Agency

Photo: Sean Compton, FOX5 Atlanta

King Tides

Saturday Morning

Sunday Morning

Project Overview

A high-density deployment of smart sea level sensors to provide hyper-local, real-time water level data across the community.

Goals:

- emergency planning & response real-time data portal & toolkits
- short- and long-term risk assessment and resilience planning
- develop & test educational resources middle & high school curricula
- communication and awareness public events, installations, website

See more details at http://sealevelsensors.org

Project Team

<u>Nick Deffley</u> Office of Sustainability Tom McDonald David Donnelly

Lara Hall

Tom Maty Grace Herrington

Dr. Kim Cobb Dr. Russ Clark* Dr. David Frost Dr. Emanuele Di Lorenzo Dr. Alex Robel Dr. Sally Ng Dr. Iris Tien Lalith Polepeddi Matt Sanders Jayma Koval Tim Cone* Selena Perrin Peter Presti Scott Gilliland *GT-Savannah

Randall Mathews Leon Davenport Dennis Jones David Anderson

Harambee House

Dr. Mildred McClain Dawud Shabaka

Skidaway Institute of Oceanography **UNIVERSITY OF GEORGIA** Dr. Clark Alexander

Rebecca

Greenbush

Sea level rise on the Georgia coast

• - have occurred since 2015

flooding frequency and intensity rising

Source: NWS Charleston

+1-4ft likely

+10ft possible

source: National Climate Assessment, 2018

Photo: Russ Clark, Georgia Tech

Global sea level rise scenarios

2) response of the ice sheets to warming

Sweet et al., 2017 Fourth National Climate Assessment, 2018

ultrasonic sensor:

- \$250 in parts
- powered by D-cell batteries or small solar cell
- LoRaWAN communications
- installed on bridges, docks
- low installation and maintenance costs

gateway device:

- roughly \$1,500
- 1 to 4 mile range
- can serve hundreds of sensors
- needs internet, power

opportunity:

provides backbone for
diverse IoT applications
(temp, humidity, air quality, etc)
Other student projects!

Tell your students about this!

- Great option for low powered, real-time monitoring projects
- Our goal is to provide this coverage across the Georgia Coast
- I love to help students work on these types of projects
- Have them email me: Russ.Clark@gatech.edu

To date: 50+ sensors 15 gateways

average residuals between GT sensors and Ft. Pulaksi = less than 1", maximum 6"

Decision Support Tools

<u>public data portal (dashboard.sealevelsensors.org)</u> -browse sensor data past and present -slider for visualizing flooding from past flood events, future flood events

<u>emergency planning portal</u> -access real-time water level data, flag bridges, critical infrastructure for flood risk

<u>3-day flood forecasts (in development)</u> -validation with sensor data streams underway

Modeling Research Team

Led by Dr Emanuele Di Lorenzo

Di Lorenzo, Frederico, Pinardi et al.

Future goals integrated forecasts of compound risk

Coastal Water and Ocean Model

Regional Atmosphere & Land Hydrology Model

Urban Flooding Models with Infrastructure

Di Lorenzo, Pinardi et al. Lozano. Tien et al.

GOAL: To model and forecast water level changes at the scale where people live

10 meter resolution

Google Earth

New Simulation and Forecast Models

http://savannah.cmcc-opa.eu

a.eu

0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

mapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community, CMCC

water deptr

e La

Models accounts for Rivers

Models accounts for Rivers

Real Time 3-day Forecasts

Real-Time Forecasts online — http://savannah.cmcc-opa.eu/

Internet Portal to access Water Level Forecasts

Real-Time Forecasts online — http://savannah.cmcc-opa.eu/

Water Level Predictions

Water Level Predictions

Flooding Predictions

Flooding Predictions

Flooding Predictions

Avon Park

+6 feet difference

Avon Park

"Without allies and friends and partnerships beyond our own backyard, we're not gonna make it."

-- Dr. Mildred McClain Director, <u>The Harambee House</u> Savannah, GA

partnering towards a resilience hub for historically marginalized communities

targets flooding, air quality, temperature, starting with K-12 schools

Chatham Emergency Management Agency (CEMA) Portal Team

Developing tools for emergency management users

Inundation Methodology

Data

- 1 ft (m) lidar-derived DEM (SAGIS) • possibly DSM to do bridge inundation?
- Hydrologic features (SAGIS)
- · Sensor readings (API)
- HUC 12 boundaries? (USGS)

Methods

· Modified bathtub model vs. interpolation

Randall Mathews

Akhil Chavan

Lalith Polepeddi

Jude Mwenda

Kait Morano

Educational Partnerships

Sea Level Rise Curriculum

Coastal communities are experiencing an increase in coastal flooding due to storms, king tides, and sea level rise. Educating students on these issues is not only a great science and math exercise, it increases informed-decision making on adapting to climate changerelated trends.

- developed by Dr. Alex Robel and Jayma Koval
- webinars for teachers available online at:

https://secoora.org/education-outreach/sea-level-rise-curriculum/

Dr. Yanni Loukissas Georgia Tech

Community engagement & curriculum dev't

Keys to our success

-partnerships with city, county officials from Day 1
-frequent team calls, public workshops
-deep investments by entire research team
-incredible student researchers, interns

Continuing challenges

-funding, funding, funding -hurricanes and pandemics